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ABSTRACT

This paper studies the problem of controlling large flexible structures
by using decentrallized feedback control. The proposed algorithm is initially
applied to the control of a flexible beam. Two independent forces are applied
at each tip of the beam. One displacement sensor and one velocity sensor are
colocated with each force actuator. Computer simulations indicate that the

decentralized feedback is effective in suppressing the structural vibratlons
of the beam.

Consultant for Lawrence Livermore National Laboratory, also Professor
of Electrical and Computer Engineering, University of California, Davis.
Visiting Scientist at the Department of Electrical and Computer
Engineering, University of California, Davis.

* %



1. INTRODUCTION

This paper studies the problem of controlling large scale structural
systems to meet certain stringent performance speciflications. The motion of a
large flexible structure is usually modelled, via finite element method, by a
set of linear differential equations. However, due to the large number of
degrees of freedom, the finite element models of large structures are of
extremely high order (typically thousands of variables). Furthermore, in
order to maintain the desired performance of a large flexible structure, large
numbers of sensors and actuators are necessary.

To control such complex systems, new and innovative methods are
necessary. In this paper, we propose to apply the Decentralized Optimal
Control Theofy [1], [2] to our problem. We have completed a design of
decentralized controller for a flexible beam in order to demonstrate the
proposed technique. This flexible beam problem was first studied by Gavel and

Woo [3], for which a centralized optimal controller was constructed.

We started with a finite-element model of this beam with 51 modes. In
our reduced-order design model, we have included one rigid body and five
elastic modes. One force actuator is assumed to be located at each tip of the
beam. One displacement and one velocity sensor are colocated with each force
actuator. We are able to find a set of decentralized feedback gains which

stabilize the system. Computer simulations show that structural vibrationas
are well suppressed.

2. DECENTRALIZED OPTIMAL CONTROL

In [1], Yanchevsky and Hirvonen have proposed an interesting algorithm
which constructs a sequence of feedback matrices for decentralized optimal

control problems. Specifically, consider the following discrete-time system

Xeoq ™ Axt + But (1)

where xt € Rn. ut [ Rm are the state and input, A and B are constant matrices

of appropriate sizes. The usual quadratic performance index 1s defined as
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where QT and Q are assumed to be positive semi-definite, and Ro is assumed to
be positive definite.

The optimal control problem is to find a sequence of matrices Kt' such
that the feedback control u = - Ktxt minimizes the performance index J in
(2). Let kt’J be the element at the i1-th row and the j—-th column of the

matrix Kt‘ Let ut and xt be the i-th component of Uy and

xt, respectively. Then ut can be written as
i,1 o1, 1 i,n _n
u, = ut +t...t ut kt xt . kt xt
n i
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The augmented performance index is as follows:
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The nonnegative numbers ri'J may be interpreted as the cost of feedback
from the j-th component of xt to the i-th component of Uy .

Let ei denote an n-dimensional column vector whose i-th component is

equal to 1 and others are equal to zero. Then the performance index (3) can
be rewritten as

'I‘ 1 1 ( L n ) 1) I) (u)
J = x Qx + I x + K RK + T eeKRKee)x
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where Ri are diagonal matrices Ri = diag (r1,1, r2,1""' Pm,i)'
(1=1,...,n). Using dynamic programming technique to minimize (4), the
following 1lterative formula is obtained,

i ! -1.1
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where Dt and Kt , (1=1,...,n) are the i~-th columns of matrices Dt and Kt'

respectively.

Procedure (5) generates a sequence of feedback matrices Kt for the
performance index in (4), and it converges to the steady state solution X if
system (1) is stabilizable. We consider the case of decentralized control by

setting the cost of feedback ri’J to either o or +«, depending on whether the
J

state Xy is available for evaluating u t or not. Procedure (5) can be
modified as follows:

i ' i
Koy = F((B PB +R), RIDy, (1=1,...,n)
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where F (°) is defined as follows:

' ' -1
F((B PtB + Ro), Rl) = 1lim...1lim (B PtB + Ro +R) -,
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and S = | (1,) | kt'J is required to be zero for all t } .
For more details on the above algorithm, see [1], [2].

3. DYNAMIC MODEL FOR A FLEXIBLE BEAM

To evaluate the effectiveness of the Decentralized Optimal Control Theory
stated in the last section, we adopt a specific example from a paper by Gavel
and Woo [3]. In this example, a one meter long flexible beam structure, as
shown by Fig. 1, 1s to be controlled. The beam is pivoted in the middle, and
has two 1 kilogram lumped masses at 30 cm and 70 cm from one end,
respectively. The beam has a Young's modulus E = 109 newton/meter. The area
moment of inertia is I = 1079 (meter)u, which corresponds to 1 cm square cross
section. Without the extra masses, the beam has a total mass of 1 kilogram.
The torsional spring is rather weak with k = .1 newton-meter/radian and the

linear spring is very strong at kl = 1010 newtons/meter.

Two independent control forces f‘1 and f2 are applied to each end of the
beam. We have derived a finite—element model for this system with 51 modes.

The lowest B8 modes and modal shapes are shown in Fig. 2.

4. DECENTRALIZED CONTROL AND SIMULATION RESULTS

To apply the Decentralized Optimal Control technique, we exclude all but
the lowest 6 modes in the design model. This continuous-time design model is

further transformed into a discrete-time system using a sampling time of
0.01 sec.

In (3), the weighting matrices QT and Q are chosen to be 50 x 112, and
R0 = 10_5 X 12. We further assume that at each tip of the beam, there is a

displacement sensor and a velocity sensor to produce the information for
feedback.

By using the formula in (5), we obtain the decentralized feedback law as
follows:




f, = - 14.2045 x (displacement at the left tip)
- 3.9060 x (velocity at the left tip)

f, = - 14,2045 x (displacement at the right tip)
- 3.9060 x (velocity at the right tip).

Then we apply this decentralized feedback to the 12-th order design
model; the resulting closed-loop system is stable with the following
elgenvalues:

0.7625 + 0.19331
-0.4212 + 0.70231
~0.5613 + 0.5999i
0.7925 + 0.28831
0.8426 + 0.10871
0.9226 + 0.02551

The largest magnitude of these eigenvalues is 0.9230.

Next we perform the time-domain simulation. For this regulation problem,

Wwe simulate the time response of the controlled beam starting from the initial
bending condition shown by Fig. 3.

A 3-D view of the beam response is shown in Fig. 4. Notiece that the
vertical axls 1s not in the same scale as the horizontal axis. The smooth
time responses of both tips are shown in Fig. 5.

5. DISCUSSION AND CONCLUSION

In this paper, we have successfully applied the Decentralized Optimal
Control Theory [1], [2] to a flexible beam problem. The main features of our
approach are the following:

(1) Decentralized control simplifies the structure of feedback
controllers significantly.

(11) Yanchevsky's algorithm produces the controllers in a straightforward
manner. The user only needs to specify the weighting matrices QT' Q
and Ro. In contrast, other methods require trial and error, and

often fail to produce a stabilizing controller.
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(iii) Yanchevsky's algorithm can produce simple controllers (with few
measurements) based on high-order design models. In contrast, other
methods usually require low-order design models (excluding high

frequency modes) in order to produce simple controllers.

We plan to pursue our future research in the following directions:

(a) Efficient Computational Algorithms

In the above—-mentioned design example, we have used a model
with six modes. The decentralized feedback gains can be computed
rather easily. However, for the design of large scale systems with
thousands of modes, we expect to encounter various numerical
difficulties and the problem of excessive computational time. 1In
parallel with the usual full-state feedback case, we shall explore
the possibility of finding the steady-state feedback matrix by
directly solving an algebraic Riccati equation in order to reduce

the computational requirement.,

(b) Enhancement of Stability Robustness

The design of the controllers is based on a reduced-order model
Wwith known parameters., These parameters may differ from the actual
parameters of the system. Furthermore, we have excluded the high-
frequency dynamics from our design model. These two sources of
error may cause the closed-loop system to be unstable. We will
study the severeness of this problem in our design. We will also
explore ways to enhance the stability robustness to parameter

variations and to model order reduction [4], [5].
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Fig. &4 3D View of the Beam Response
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Fig. 5 Beam Response at Tips
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